miércoles, 12 de marzo de 2008

DESARROLLO DE TEMAS DE CIENCIA TECNOLOGIA Y AMBIENTE DE 3ER GRADO DE SECUNDARIA

TEMA:01 PROYECTO DE INVESTIGACION
La elaboración de los proyectos de investigaciónCon las siguientes pautas no pretendo crear modelos que se adapten al trabajo de elaboración de los proyectos de investigación que van a ser en un futuro las monografías de grado. Es nuestro objetivo ilustrar y dar paso a paso el proceso de elaboración de un proyecto, que se elabore teniendo en cuenta que él todo es la esencia del proceso de investigación y no aislar conceptos ni partes del mismo a elaboraciones secundarias dando prioridad a otros. El cuerpo del proyecto debe ser secuencial y gozar del proceso de los vasos comunicantes que determinara el éxito del proyecto. Es una pauta de seguimiento y de construcción que se debe tener en cuenta para que el proyecto goce de un éxito y de una realización a ciencia cierta. Que todo lo expuesto en estas líneas sea el verdadero reflejo de un trabajo de investigación y no la simple transcripción de información de un texto a estas páginas. Espero aportar aunque sea una mínima parte a la realización de sus proyectos de investigación. ESQUEMA PARA LA ELABORACIÓN DE UN PROYECTO DE INVESTIGACIÓN

I.- EL PROBLEMA. Título descriptivo del proyecto. Formulación del problema. Objetivos de la investigación. Justificación. Limitaciones

II.-MARCO DE REFERENCIA. Fundamentos teóricos. Antecedentes del problema. Elaboración de Hipótesis. Identificación de las variables.

III.-METODOLOGÍA. Diseño de técnicas de recolección de información. Población y muestra. Técnicas de análisis. Indice analítico tentativo del proyecto. Guía de trabajo de campo.

IV.-ASPECTOS ADMINISTRATIVOS. Recursos humanos. Presupuesto. Cronograma.

V.- BIBLIOGRAFÍA.


DESARROLLO DEL PROYECTO DE INVESTIGACION

I.- EL PROBLEMA. Lo primero que nos interesa es conocer, saber, lo que será investigado: Por qué, para qué, cual es el valor o la importancia del hecho o fenómeno a investigar. Si la investigación a realizar tiene criterios de prioridad, novedad, oportunidad, conformismo o comportamiento. Título descriptivo del proyecto. El título de la investigación a realizar, debe ser claro, preciso y completo. Está destinado a indicar dónde, qué, cómo y cuándo, en forma clara y sucinta indica el lugar a que se refieren los datos, el fenómeno que se presenta, las variables que sé interrelacionan, y la fecha a que se refiere la información. B. Formulación del problema. ¿Qué entendemos por formular un problema? Partamos del siguiente criterio: formular un problema es caracterizarlo, definirlo, enmarcarlo teóricamente, sugerir propuestas de solución para ser demostradas, establecer unas fuentes de información y unos métodos para recoger y procesar dicha información. La caracterización o definición del problema nos conduce otorgarle un título, en el cual de la manera más clara y denotativa indiquemos los elementos que le son esenciales. La formulación del problema, es la estructuración de toda la investigación, de tal forma que uno de sus componentes resulte parte de un todo y que ese todo forme un cuerpo que tenga lógica de investigación. Se debe por lo tanto, sintetizar la cuestión proyectada para investigar, generalmente a través de un interrogante. En primer lugar, deberá revisarse si el problema es susceptible de resolverse mediante una investigación. Puede inquirirse sobre la significación del problema, es decir, si su solución representa una aportación importante al campo de estudios y si puede abrir nuevos caminos. Se aconseja además preguntarse: ¿Es un problema nuevo o ya existen trabajos sobre él? En este caso, ¿las soluciones son pertinentes? ¿ Esta adecuadamente planteado el problema? ¿Cuáles hipótesis se pretenden confirmar? ¿Los términos están suficientemente definidos? ¿ Vale la pena emplear tiempo y esfuerzo en su solución, aunque esta sea provisional? C.- Objetivos de la investigación. Presupone el logro esperado para las respuestas expresadas en la hipótesis. Es el propósito de la investigación. Responde a la pregunta: ¿PARA QUÉ?, ¿QUÉ SE BUSCA CON LA INVESTIGACIÓN?. Un objetivo debe redactarse con verbos en infinitivo que se puedan evaluar, verificar, refutar en un momento dado. Existen seis categorías: Memoria, comprensión, aplicación, análisis, síntesis y evaluación. Es pertinente redactar uno de cada categoría pero siempre relacionado con lo que se busca demostrar en la investigación. Justificación- Una vez que se ha seleccionado el tema de investigación, definido por el planteamiento del problema y establecidos los objetivos, se debe indicar las motivaciones que llevan al investigador a desarrollar el proyecto. Para ello se debe responder a la pregunta de: ¿POR QUÉ SE INVESTIGA? Limitaciones- Es pertinente dar al problema una formulación lógica, adecuada, precisar sus límites, su alcance, para ello es necesario tener en cuenta los siguientes factores: Viabilidad: lo importante es que el investigador debe verificar la posibilidad de conseguir fuentes de datos para el desarrollo de su estudio, ya sean del grado primario o secundario. Lugar o espacio donde se llevará a cabo la investigación. Tiempo, si el asignado me da la cobertura del estudio o debo disponer de uno en caso de imprevistos. Financiación, si voy a implementar algo que cantidad de dinero dispongo para ello o si solo será un estudio de factibilidad.

II.- MARCO DE REFERENCIA Es importante señalar en el proyecto la estrecha relación entre teoría, el proceso de investigación y la realidad, el entorno. La investigación puede iniciar una teoría nueva, reformar una existente o simplemente definir con más claridad, conceptos o variables ya existentes. Fundamentos teóricos. Es lo mismo que el marco de referencia, donde se condensara todo lo pertinente a la literatura que se tiene sobre el tema a investigar. Debe ser una búsqueda detallada y concreta donde el tema y la temática del objeto a investigar tenga un soporte teórico, que se pueda debatir, ampliar, conceptualizar y concluir. Ninguna investigación debe privarse de un fundamento o marco teórico o de referencia. Es necesario que el grupo de trabajo conozca y maneje todos los niveles teóricos de su trabajo, para evitar repetir hipótesis o planteamientos ya trabajados. La reseña de este aparte del proyecto se debe dejar bien claro para indicar que teórico(s) es el que va a servir de pauta en su investigación. Estos fundamentos teóricos van a permitir presentar una serie de conceptos, que constituyen un cuerpo unitario y no simplemente un conjunto arbitrario de definiciones, por medio del cual se sistematizan, clasifican y relacionan entre sí los fenómenos particulares estudiados. Antecedentes del tema. En este aspecto entrara en juego la capacidad investigadora del grupo de trabajo, aquí se condensará todo lo relacionado a lo que se ha escrito e investigado sobre el objeto de investigación. Hay que diferenciar entre teóricos consultados y antecedentes del problema, ya que a veces confundimos los dos aspectos. El primero – los teóricos- son los planteamientos escritos sobre el tema que va tratar en su objeto de investigación, y los antecedentes del problema, son las investigaciones que se han hecho sobre el objeto de investigación y te pueden servir para ampliar o continuar su objeto de investigación, en algunos casos servirá para negar su objeto de investigación cuando esto suceda se entra e elaborar postulados que más tarde entraran a formar el campo de las investigaciones negativas, sector aún sin explotar a fondo, porque en la mayoría de los trabajos de investigación nos limitamos a ampliar sobre conceptos trabajados o a plantear nuevos postulados pero siempre con alta carga de complemento sobre lo investigado. Es hora de que se inicie un proceso de negación a muchas investigaciones que están en los anaqueles de las bibliotecas de las diferentes universidades del país sin haber aportado nada a la construcción del conocimiento en cualquiera de sus modalidades. Es oportuno recordar que la citación de los antecedentes se pueden elaborar con base en fechas y/o cronogramas de otros proyectos realizados, pero es indispensable citar la fuente de consulta. Elaboración de hipótesis. Es una proposición de carácter afirmativo enunciada para responder tentativamente a un problema. Se plantea con el fin de explicar hechos o fenómenos que caracterizan o identifican al objeto de conocimiento. Hipótesis de primer grado: describe hechos o situaciones del objeto de conocimiento, los cuales aunque son conocidos por el saber popular, pueden ser sometidos a comprobación. Hipótesis de segundo grado: establecen una relación causa – efecto (sí X entonces Y). Esta afirmación se demuestra y verifica por su vinculación con un modelo teórico. Hipótesis de tercer grado: se afirma la presencia de relaciones existentes entre variables complejas. Sugiere explicaciones entre fenómenos de mayor extensión. Hipótesis nula: aquella por la cual indicamos que la información a obtener en contraria a la hipótesis de trabajo. D.- Identificación de las variables. Toda hipótesis constituye, un juicio, o sea una afirmación o una negación de algo. Sin embargo, es un juicio de carácter especial. Es realmente un juicio científico, técnico o ideológico, en cuanto a su origen o esencia. Siendo así, toda hipótesis lleva implícita un valor, un significado, una solución específica al problema. Esta es la variable, o sea el valor que le damos a la hipótesis. La variable viene a ser el contenido de solución que le damos al problema de investigación. Variable independiente: El valor de verdad que se le da a una hipótesis en relación con la causa, se denomina variable independiente. Variable dependiente: Denominamos de esta manera a las hipótesis cuando su valor de verdad hace referencia no ya a la causa, sino al efecto. Variable interviniente: Será aquella cuyo contenido se refiere a un factor que ya no es causa, tampoco efecto, pero sí modifica las condiciones del problema investigado.

III.- METODOLOGIA A.- Diseño y técnicas de recolección de información. Aquí debe condensar toda la información relacionada con el cómo va a realizar su trabajo objeto de estudio, que parámetros van a utilizar si se apoyará en datos estadísticos, que evaluara de toda la información RECUERDE QUE TODA INFORMACION no siempre le sirve para su trabajo. Debe seleccionar que sirve de una entrevista, de un artículo de revista, de un comentario ya sea radial, textual o de otra índole. Se debe citar la fuente al igual que las personas que van a proporcionar los datos, recuerde mencionarlos aquí y en forma especial y detallada en los RECURSOS ya sean humanos o institucionales.

B.- Población y muestra. Población o universo es cualquiera conjunto de unidades o elementos como personas, fincas, municipios, empresas, etc. , claramente definidos para el que se calculan las estimaciones o se busca la información. Deben estar definidas las unidades, su contenido y extensión. Cuando es imposible obtener datos de todo el universo es conveniente extraer una muestra, subconjunto del universo, que sea representativa. En el proyecto se debe especificar el tamaño y tipo de muestreo a utilizar: estratificado, simple al azar, de conglomerado, proporcional, polietápico, sistemático, etc.

C.- Técnicas de análisis. Para poder definir las técnicas de análisis, se debe elaborar, con base en las hipótesis generales y de trabajo, un plan o proyecto tentativo de las diferentes correlaciones, especificando: Sistema de codificación y tabulación. Serán las técnicas estadísticas para evaluar la calidad de los datos. Comprobar las hipótesis u obtener conclusiones.

D.- Indice analítico tentativo del proyecto. Es aconsejable elaborar un índice analítico tentativo que de una visión general de las partes o capítulos que va a contener el trabajo a realizar. E.- Guía de trabajo de campo. En algunos proyectos de investigación es necesario presentar una guía de trabajo de campo, para su elaboración se pueden seguir los siguientes pasos: Estudio previo o sondeo. Diseño de la muestra. Preparación de los materiales de recolección de datos. Equipo de trabajo necesario: grabadoras, cámaras fotográficas, filmadoras, etc. Selección y entrenamiento de personal. Revista y prueba experimental de las etapas anteriores. Recolección de datos, ya sea primarios o secundarios. Elaboración del informe del trabajo de campo. Estimación del personal necesario y costos.

IV.- ASPECTOS ADMINISTRATIVOS. En ésta sección se debe ubicar los aspectos administrativos del proyecto, ésta etapa tiene una mayor importancia para aquellos proyectos que se presentan para obtener financiación, total o parcial.

A.- Recursos humanos. Relacionar las personas que participarán: asesores, equipo de recolección de datos, etc., especificando la calificación profesional y su función en la investigación.

B.- Presupuesto. Se debe presentar un cuadro con los costos del proyecto indicando las diferentes fuentes, si existen, y discriminando la cuantía de cada sector e la investigación. Presentar un cronograma financiero que cubra todo el desarrollo del proyecto.

C.- Cronograma. Es un plan de trabajo o un plan de actividades, que muestra la duración del proceso investigativo. El tipo de Cronograma recomendado para presentar el plan de actividades que orienten un trabajo de investigación es el de GANTT. Las actividades aquí indicadas no son definitivas. La especificación de las actividades depende del tipo de estudio que se desea realizar.


ACTIVIDAD:01
ELABORAR EN FORMA GRUPAL UN PROYECTO DE INVESTIGACION SIGUIENDO LOS PASOS ESTUDIADOS.
*EL TEMA DEBE SER NEGOCIADO EN FORMA GRUPAL
*EL TEMA DEBE SER NOVEDOSO
*EL MARCO TEORICO DEBE IR CON SU FUENTE BIBLIOGRAFICA.
*EL COSTO DEL PROYECTO DEBE SER DETALLADO
*DEBE CONSIDERARSE EL DISEÑO DEL PROYECTO
*DEBE SER PRESENTADO EN HOJA A4
*DEBE CONTENER CARATULA CON NIOMBRES DE LOS INTEGRANTES (2 COMO MINIMO Y 5 COMO MAXIMO)




TEMA:02 CONCEPTOS BASICOS DE QUIMICA



¿QUE ES QUIMICA?
Se pueden señalar algunas definiciones referentes al concepto de química .Generalmente las definiciones dependen del autor y de sus ideas con respecto a ella. Algunas definiciones son: Química es la rama de la ciencias física estrechamente relacionadas con físicas y que trata esencialmente de la composición y el comportamiento de la naturaleza Química es una ciencia que estudia la naturaleza de la materia y los cambios en la composición de la misma En Conclusión Química es una ciencia que estudia la composición de la materia y los cambios que en ella ocurren



RELACIONES CON OTRAS CIENCIAS

La química esta estrechamente relacionada con las ciencias físicas, extendiéndose a varias disciplinas que vas desde la astronomía hasta la biología. Física Arqueología Biología Astronomía Medicina Física: Se estudia conjuntamente con la química en la ciencia fisicoquímica debido a que muchos fenómenos ocurren simultáneamente combinando las propiedades físicas con las químicas. Arqueología: Para descifrar datos e interrogantes como la antigüedad de piezas arqueológicas. La exactitud se logra por medio de métodos químicos como el del carbono 14. Biología: La ciencia de la vida, se auxilia de la química para determinar la composición y estructura e tejidos y células. Astronomía: Se auxilia de la química para construcción de dispositivos, basados en compuestos químicos para lograr detectar algunos fenómenos del espacio exterior. Medicina: Como auxiliar de la biología y la química, esta ciencia se ha desarrollado grandemente ya que con esta se logra el control de ciertos desequilibrios de los organismos de los seres vivos. Química General: Estudia las propiedades comunes de todos los cuerpos y las leyes a las que están sometidos los cambios que en ella se efectúan. Química Aplicada: Estudia las propiedades de cada una de las sustancias en particular, desde el punto de vista útil medicinal, agrícola, industrial, etc. Química Inorgánica: Estudia las sustancias que provienen el reino mineral Química Orgánica: Estudia principalmente los compuestos que provienen seres vivos, animales y vegetales.



APLICACIONES DE LA QUIMICA



Sustancia Aplicación Ácido Fluorhídrico Grabado de Vidrio Cloro Decolorante de la pasta el papel y fibras de origen vegetal Ácido Clorhídrico Obtención de glucosa a partir del almidón Bromuro Potasico En medicina se usa como sedante Yoduro y Bromuro Potasico En la elaboración de películas fotográficas Yodo Fabricación de tinturas de yodo medicinal Sulfuro Calcico En la arboricultura para proteger plantas contra insectos y hongos Azufre En la fabricación de pólvora, volcanización del caucho, blanqueo de lana y medicamentos para la piel Ácido Sulfúrico Acumuladores de plomo, abonos químicos Nitrógeno Elaboración de explosivos (TNT), abonos químicos Sulfuro de Fósforo Fabricación de cerillos Baquelita Producto de reacción del fenol y forma aldehído utilizado como aislante en los mangos de los desarmadores MATERIA:Es cualquier cosa que ocupa un lugar en el espacio, posee masa y es capaz de impresionar nuestros sentidos. PROPIEDADES PARTICULARES: Son las cualidades características de cada sustancia con independencia de tamaño o forma de la muestra. Ejemplo, el azucar y la sal son sólidos cristalinos blancos. El primero es de sabor dulce y se funde volviéndose marrón cuando se calienta en un cazo, puede arder en el fuego directo en contacto con el aire. La sal en cambio se puede calentar a altas temperaturas y no funde, desprendiendo un color amarillento al contacto del fuego directo. PROPIEDADES GENERALES: Son cualidades que no son característica de la sustancia de por si, ejemplo: El tamaño, la forma, la longitud, el peso y la temperatura. PROPIEDADES FISICAS: Son aquellas que pueden ser observadas sin cambiar la naturaleza de las sustancias ejemplos: Color, olor, dureza, elasticidad, punto de fusión y punto de ebullición. PROPIEDADES QUÍMICAS: Son aquellas que se refieren a la naturaleza intima de la sustancia o a la manera de reaccionar con otra. Ejemplo: La combustión del azufre para producir anhídrido sulfuroso, la explosión producida al quemar hidrogeno, la combustión de un trozo de cinta de magnesio para producir óxido de magnesio. 1ª Ley de Newton o ley de la inercia: Un cuerpo permanecerá en un estado de reposo o de movimiento uniforme, a menos de que una fuerza externa actúe sobre él. Propiedad de la materia que hace que los cuerpos no pueden modificarse por si mismo el estado de reposo o de movimiento. Masa: totalidad de una cosa cuya totalidad son de una misma naturales El volumen también es una propiedad general de la materia y, por tanto, no permite distinguir un tipo de materia, una sustancia, de otra, ya que todas Tienen un volumen. Aunque toda la materia posee masa y volumen, la misma masa de sustancias diferentes ocupan distintos volúmenes, así notamos que el hierro o el hormigón son pesados, mientras que la misma cantidad de goma de borrar o plástico son ligeras. La propiedad que nos permite medir la ligereza o pesadez de una sustancia recibe el nombre de densidad. Cuanto mayor sea la densidad de un cuerpo, más pesado nos parecerá. Masa: es la cantidad de materia que tiene un cuerpo, su unidad fundamental en el Sistema Internacional de Unidades es el kilogramo (kg) y en el Sistema Inglés es la libra (lb) .Para medir masas muy pequeñas, como la del átomo, se emplea la uma (u) que es la unidad atómica de masa cuya equivalencia es: El gramo (g) es una unidad de masa muy utilizada y se puede representar con múltiplos y submúltiplos. Peso: es la atracción que ejerce la Tierra sobre los cuerpos hacia su centro, es decir, el efecto que tiene la gravedad terrestre sobre ellos. Volumen: Un cuerpo es el lugar o espacio que ocupa. Existen cuerpos de muy diversos tamaños. Para expresar el volumen de un cuerpo se utiliza el metro cúbico (m³) y demás múltiplos y submúltiplos. Inercia: es la resistencia que presenta un cuerpo a cambiar su estado de reposo o de movimiento, mientras no exista una fuerza que lo modifique. Impenetrabilidad: es la propiedad que tienen los cuerpos de no poder ocupar el mismo lugar o espacio al mismo tiempo. Divisibilidad: es la propiedad que tiene la materia de ser dividida en partículas muy pequeñas. Estado fisico de la materia: solido liquido y gaseoso Propiedades específicas Las propiedades que diferencian un tipo de materia de otra se denominan específicas y se clasifican en físicas y químicas. Algunas de las propiedades físicas son: dureza, tenacidad, maleabilidad, ductibilidad, punto de fusión, punto de ebullición, las organolépticas y densidad. Dureza: es la resistencia de los cuerpos a ser rayados. Tenacidad: es la resistencia de la materia a ser fraccionada por tensión. Maleabilidad: es la capacidad que tienen los metales para formar láminas. Ductibilidad: es la propiedad de los metales para formar alambres o hilos muy delgados. Punto de ebullición: es la temperatura a la que hierve un líquido y pasa al estado de gas o vapor. Punto de fusión: es la temperatura en la que un cuerpo sólido pasa al estado líquido. Las propiedades organolépticas son aquellas que se perciben a través de los sentidos−olor, color, sabor, brillo, etcétera −. La densidad es la cantidad de sustancia contenida en una unidad de volumen determinado, es una unidad derivada. La densidad se obtiene al dividir la cantidad de su masa entre el volumen que ocupa. La unidad en el Sistema Internacional es kg/m³, utilizándose más en la práctica las siguientes unidades g/cm³o kg/dim³, la ecuación o fórmula para representar la densidad es:

Lavoisier, Antoine Laurent de (1743−1794), químico francés, considerado el fundador de la química moderna. Nació el 26 de agosto de 1743 en París y estudió en el Instituto Mazarino. Fue elegido miembro de la Academia de Ciencias en 1768. Ocupó diversos cargos públicos, incluidos los de director estatal de los trabajos para la fabricación de la pólvora en 1776, miembro de una comisión para establecer un sistema uniforme de pesas y medidas en 1790 y comisario del tesoro en 1791. Lavoisier trató de introducir reformas en el sistema monetario y tributario francés y en los métodos de producción agrícola. Como dirigente de los campesinos, fue arrestado y juzgado por el Tribunal Revolucionario y guillotinado el 8 de mayo de 1794. Lavoisier realizó los primeros experimentos químicos realmente cuantitativos. Demostró que en una reacción química, la cantidad de materia es la misma al final y al comienzo de la reacción. Estos experimentos proporcionaron pruebas para la ley de la conservación de la materia. Lavoisier también investigó la composición del agua y denominó a sus componentes oxígeno e hidrógeno. Algunos de los experimentos más importantes de Lavoisier examinaron la naturaleza de la combustión, demostrando que es un proceso en el que se produce la combinación de una sustancia con oxígeno. También reveló el papel del oxígeno en la respiración de los animales y las plantas. La explicación de Lavoisier de la combustión reemplazó a la teoría del flogisto, sustancia que desprendían los materiales al arder. Con el químico francés Claude Louis Berthollet y otros, Lavoisier concibió una nomenclatura química, o sistema de nombres, que sirve de base al sistema moderno. La describió en Método de nomenclatura química (1787). En Tratado elemental de química (1789), Lavoisier aclaró el concepto de elemento como una sustancia simple que no se puede dividir mediante ningún método de análisis químico conocido, y elaboró una teoría de la formación de compuestos a partir de los elementos. También escribió Sobre la combustión (1777) y Consideraciones sobre la naturaleza de los ácidos (1778). La ley de la conservación de la masa dice que en cualquier reacción química la masa se conserva, es decir, la masa y la materia ni se crea ni se destruye, sólo se transforma y permanece invariable. í LA ELASTICIDAD Esta capacidad a menudo se confunde con la flexibilidad, aunque poco tiene que ver con ella, La propiedad que tienen las gomas de volver a su posición inicial tras su tracción Aristóteles fue, sin duda, el fruto intelectual más granado de aquella civilización refinada, especialmente idónea para la filosofía. Nació en el año 384 a. c., en la ciudad de Estagira. Hijo de Nicomaco, medico de la corte macedónica, recibió su principal influencia en la Academia de Platón. No estaba mezclado en la vida pública, ni siquiera podía intervenir en ella. Ateniense de corazón y de espíritu, no era ciudadano de su patria de predilección. Desde el punto de vista jurídico, era un meteco, es decir, que gozaba ampliamente de la hospitalidad de Atenas, pero la ley no le permitía intervenir en los asuntos de la ciudad por ser extranjero. Durante veinte años, Aristóteles permaneció en la Academia convirtiéndose en el alumno más talentoso de Platón. Al morir éste, Aristóteles sale de Atenas para ocuparse de la educación del hijo del Rey Filipo de Macedonia, el que habría de ser Alejandro Magno. Sin embargo, nunca llegaron a entenderse y Aristóteles decide volver a Atenas y funda una institución similar a la Academia, el Liceo, en la cual ejerció un fecundo magisterio. El proyecto aristotélico consistirá en articular la causalidad formal con la causalidad del movimiento, para lo cual desarrollará una nueva teoría de la forma: renuncia a la trascendencia de las Ideas y las concibe como causas formales inmanentes, es decir, inherentes a las cosas mismas. Abandona así a la separación de las Ideas, que las condena a la impotencia frente al mundo del movimiento y el cambio. Pero esta modificación no fue un rechazo integral del platonismo. Entre las obras más importantes de Aristóteles se encuentran aquéllas en la que trata la Lógica (en el "Organon" y "Los Analíticos") y la Metafísica Aristóteles propuso una división diferente de la filosofía: filosofía teórica(que incluye la teología, las matemáticas y la física), filosofía práctica(ética y política) y filosofía poética o productiva(técnica y arte). Preocupaban a Aristóteles los fenómenos exteriores. Para buscar las bases fijas de la organización social, recogió las constituciones de ciento cincuenta y ocho Estados, e impresionándose por la desigualdad que dominaba en la sociedad antigua, intentó encontrar un fundamento a esto en la superioridad de inteligencia y así consiguió hacer de su república perfecta una aristocracia en que el derecho es siempre la voluntad del más fuerte. Consideraba que la política es el complemento moral y que, en tanto, toda asociación debe fundarse en la justicia y en el bien. Estableció también en sus estudios, que el hombre debe vivir rodeado de sus semejantes, y haciendo uso que el derecho de la naturaleza le da al hombre para que mande sobre la mujer y sus hijos. Existen otros seres vivos a los que la naturaleza ha privado de inteligencia, y libre albedrío, como lo son los esclavos, esta misma naturaleza es la cual ha dado diferentes cuerpos al esclavo y al hombre libre, entre los cuales existen relaciones naturales de ventajas recíprocas, puesto que la naturaleza ha hecho de las dos un todo. .

Leucipo y Demócrito (460−370 a.C.): Leucipo: Carecemos de datos acerca de su vida. Algunos críticos han llegado a dudar de su existencia, pero Aristóteles y Teofrasto lo consideran como el fundador de la Escuela Atomista. Escribió probablemente dos obras: "La Gran Ordenación del Cosmos" y "Sobre la Mente". Demócrito: Natural de Abdera. Gran figura intelectual en Grecia, excelente viajero y escritor. Famoso por su longevidad, pues rebasó los cien años. Su sonrisa continua fue proverbial en la antigüedad. Se dice que para no reírse de todo, al final de su vida se sacó los ojos. Fue escritor elegante y fecundo. Entre sus obras se cuentan: "La Pequeña Ordenación del Cosmos", "Tritogeneia" (Sobre Moral), "De las Formas", "Del Entendimiento", "Del Buen Ánimo", "Preceptos". Ambos son los representantes de la escuela atomista. Normalmente se presentan juntos, porque es casi imposible distinguir el pensamiento que pertenece a uno y a otro. Para los atomistas la realidad está conformada por unidades o partículas pequeñísimas e indivisibles: átomos. El número de átomos es infinito. Son impenetrables, indestructibles, eternos, pesados y todos de la misma naturaleza. Sin embargo se da entre ellos una infinita variedad de formas externas y de tamaños. La dureza y el peso de los cuerpos dependen de la cercanía de los átomos. Estos átomos están situados en el espacio vacío o "no ser" y permanecen en continuo movimiento. Pero se trata de un movimiento eterno que resulta de las precisiones y de los choques entre ellos. En esta concepción mecanicista del mundo todo está determinado por las leyes de la naturaleza. Las ideas más fuertes de su doctrina son: Psicología: El alma es material y está compuesta de átomos materiales y esféricos, sutiles y de móviles en todos los sentidos; es el principio de la vida y del movimiento en los animales y en los hombres; se alimenta por la respiración de los átomos de fuego esparcidos en el aire. Demócrito afirma al respecto: "... de los cuerpos se desprende constantemente una especie de pequeñísimas imágenes que penetran por los poros de los órganos sensoriales, y al encontrarse con los átomos del alma, originan el conocimiento sensible". · Teología: En este concepto esencialmente materialista de la realidad tampoco queda lugar para un Dios personal y trascendente. No obstante, los atomistas admiten la existencia de dioses, que moran en los espacios comprendidos entre los distintos mundos, y que viven felices, sin preocuparse lo más mínimo de los hombres. Los dioses están también compuestos de átomos, más perfectos que los que constituyen los seres terrestres, y son merecedores de la veneración y del culto de los hombres. · Ética: En los atomistas solamente cabe una moral estrictamente limitada a la felicidad en la presente vida, sin norma trascendente de conducta ni sanciones futuras. A Demócrito se le atribuyen · numerosas máximas morales, muchas de ellas hermosas y cargadas de un gran humanismo. He aquí una muestra: "... el hombre debe producir el dominio de sí mismo basándose en esfuerzo, ejercicio y moderación. Hay que mantenerse con firmeza en las adversidades conservando la grandeza del alma. No aspirar a lo inaccesible, sino desear tan solo lo que podemos alcanzar. Hay que prever las consecuencias de toda clase de excesos y refrenar la ambición. El mayor placer consiste en la contemplación de las cosas bellas. La virtud produce la paz del alma, mientras que el crimen es causa de turbación y de temor... no se debe obrar por la opinión de los demás, sino solamente obedeciendo a la propia conciencia". Política: Las leyes son un mal, pues restringen la libertad de la naturaleza; pero son necesarias para obligar a los hombres a obrar bien. Aunque el sabio no tiene necesidad de ellas y debe vivir libremente. Tampoco debe tener familia. La forma preferible de gobierno es la democracia, pues deja mayor libertad. El sabio no tiene patria: "toda la tierra es habitable para el hombre sabio, porque el mundo entero es la patria del alma noble"


FENÓMENO FÍSICO
es aquél que tiene lugar sin transformación de materia.
FENÓMENO QUÍMICO
es aquél que tiene lugar con transformación de materia.

COMBINACIÓN Es un fenómeno químico, y a partir de dos o más sustancias se puede obtener otra (u otras) con propiedades diferentes. Alquimia: arte quimerico de la trasmutacion de los de los metales que se intento en vano durante la edad media. Descubrir la piedra filosofal para obtener oro esta dio el nacimiento de la quimica. alquimia en la edad media Los sucesores de los griegos en el estudio de las substancias fueron los alquimistas medievales, aunque sumergidos en la magia y la charlataneria, llegaron a conclusiones más razonables y verosímiles que las de aquéllos, ya que por lo menos manejaron los materiales sobre los que especulaban. Durante la edad media, especialmente entre los siglos 5 y 15, la ciencia fue oscurecida por las inquietudes religiosas. Sin embargo, en el siglo 7 la ciencia reapareció con los árabes, quienes habían acumulado los antiguos conocimientos de los egipcios y de la filosofía antigua griega a través de la escuela alejandrina, fundando una práctica: la alquimia, el precedente de la química. Mezcla: asociacion de los varios cuerpos sib que existan combinacion de los mismos.


ACTIVIDAD:02
I.-HALLAR LOS PESO MOLECULARES DE LOS SIGUIENTE COMPUESTOS:
1.-N2 O5



2.-P2O5



3.-Cu2 O



4.-Al (OH)3



5.-Fe (OH)2



6.-HNO3



7.-H2SO4



8.-HClO4



9.-HIO



10.- Ca (NO3)2



11.- Al (NO3)3



12.- K ClO4



13.- H2S2O7



14.- H2S2O8



15.- H2SO5



16.- H2S2O3



17.- H2SiO3
18. H4SiO4



19.- H2CO3



20.- H2Cr2O7




II.-INVESTIGAR LA COMPOSICION QUIMICA DE LOS METEORITOS E ICEBERG Y DESARROLLARLA EN SU CUADERNO




TEMA:03 LEYES PONDERALES
1. Ley de la conservación de la masa de Lavoisier

Está importante ley se enuncia del modo siguiente: en una reacción química, la suma de las masas de las sustancias reaccionantes es igual a la suma de las masas de los productos de la reacción (la materia ni se crea ni se destruye solo se transforma). Este resultado se debe al químico francés A.L. Lavoisier, quien lo formulo en 1774. Anteriormente se creía que la materia era destructible y se aducía como ejemplo: la combustión de un trozo de carbón que, después de arder, quedaba reducido a cenizas, con un peso muy inferior, sin embargo, el uso de la balanza permitió al científico galo comprobar que si se recuperaban los gases originados en la combustión, el sistema pesaba igual antes que después de la experiencia, por lo que dedujo que la materia era indestructible. Las leyes ponderales son:Ley de la conservación de la masa, debida a lavoisierLey de las proporciones constantes, debida a proustLey de las proporciones múltiples, debida a daltonLey de los pesos equivalentes, debida a richter



2. Ley de Proust o de las proporciones constantes

En 1808, tras ocho años de las investigaciones, j.l. Proust llego a la conclusión de que para formar un determinado compuesto, dos o más elementos químicos se unen y siempre en la misma proporción ponderal. Por ejemplo, para formar agua h2o, el hidrógeno y él oxigeno intervienen en las cantidades que por cada mol, se indican a continuación1 MOL AGUA PESA 2 – 1,008 g DE H + 15,999 g DE O = 18,015 gPara simplificar los cálculos, se suele suponer que el peso atómico de h es 1 y él o es 2: 1 mol de agua = 2 . + 16 = 18 g, de los que 2 son de h y 16 de oxigeno. Por tanto, la relación ponderal (o sea, entre pesos) es de 8g de oxigeno por cada uno de hidrógeno, la cual se conservara siempre que se deba formar h2o (en consecuencia, sí por ejemplo reaccionaran 3 g de h con 8 de o, sobrarían 2g de h).Una aplicación de la ley de proust es la obtención de la denominada composición centesimal de un compuesto, esto es, el porcentaje ponderal que representa cada elemento dentro de la molécula.



3. Ley de Dalton o de las proporciones múltiples

Puede ocurrir que dos elementos so combinen entre sí para dar lugar a varios compuestos (en vez de uno solo, caso que contempla la ley de proust). Dalton en 1808 concluyo que: los pesos de una de los elementos combinados con un mismo peso del otro guadaran entren sí una relacion, expresables generalmente por medio de numeros enteros sencillos.Ejemplo se toma 100 gr de cada uno de cuatro compuestos de cloro y de oxigeno y en ellos se cumple:1er. Compuesto81,39 g de cl + 18,61 g de o;2do. Compuesto59,32 g cl + 40,68 g de o;3er. Compuesto46,67 g cl + 53,33 g de o;4to. Compuesto38,46 g cl + 61,54 g de o; A continuación se procede a buscar la relacion ponderal g de o/g de cl, con los que se obtendran los gramos de oxigeno que, para cada compuesto, corresponde a 1 g de cloro;1er. compuesto:18,61 / 81.39 = 0,2287;2do. compuesto:40,68 / 59,32 = 0,6858;3er. compuesto:53,33 / 46,67 = 1,1427;4to. compuesto:61,54 / 38,46 = 1,6001 Si Divide Por La Menor De Las Cantidades Se Llegara A La Relación Numérica Que Enuncia La Ley De Dalton:2,2287 0,6858 1,1427 1,6001= 1; = 3; = 5; = 7;0,2287 0,2287 0,2287 0,2287 4. Ley de Richter o de los pesos equivalentes Fue enunciada por el alemán j.b. Richter en 1792 y dice que: los pesos de dos sustancias que se combinan con un peso conocido de otra tercera sin químicamente equivalentes entre sí.Es decir, si a gramos de la sustancia a reaccionan con b gramos de la sustancia b y también c gramos de otra sustancia c reaccionan con b gramos de b, entonces sí a y c reaccionaran entre sí, lo harían en la relación ponderal a/c.Como consecuencia de la ley de richter, apartir de un peso equivalente patrón ( h = 1,008), es posible asignar a cada elemento un peso de combinación que se denomina peso equivalente o equivalente.Cuando el equivalente se expresa en gramos se llama equivalente gramo (concepto análogo a los de átomogramo y molécula gramo)Ejemplo: si para formar agua h2o, el hidrógeno y el oxigeno se combinan en la relación 1g de h/8 g de o, entonces el peso de combinación, peso equivalente o equivalente del oxigeno es 8 gramos. Algunos Calculos Relativos A Equivalentes GramoLos equivalentes gramo del nitrógeno en el amoniaco (nh3) suponiendo, para simplificar los calculos, que los pesos atomicos del nitrógeno y del hidrógeno son, respectivamente, 14 y 1:Puesto que el equivalente en gramos del h es 1 g y el nitrógeno requiere 3 átomos de h para formar nh3, se tendra que el 14Equivalente Gramos Del N = = 4,6667 g DE N3 El equivalente del oxigeno en el oxido de calcion (cao), suponiendo que el peso atómico del ca es 40 y el del oxigeno es 16 (recuérdese que el equivalentegramo del oxigeno es 8 g, pues así se calculo en el ejemplo del h2o):40g DE Ca 16g de Ox DE Ca 8g DE OPor Tanto8 . 40x = 20 g DE Ca.
TEMA 04 ESTRUTURA DE LA MATERIA


Introducción:
Suponga que toma una muestra del elemento cobre y se divide en pedazos cada vez más pequeños. Antes de 1800, se pensaba que la materia era continua, es decir que podía ser dividida en infinitas partes más pequeñas sin cambiar la naturaleza del elemento. Sin embargo, alrededor de 1803 ganó aceptación la teoría de un científico inglés llamado Jhon Dalton (17766-1844). La naturaleza de la materia y la forma en que los elementos se combinaban, sugería la existencia de un límite a lo que un elemento podía subdividirse.
Ahora sabemos que al dividir una muestra de cobre en trozos cada vez más pequeños, finalmente se encuentra una unidad básica que no puede ser dividida sin cambiar la naturaleza del elemento. Esta unidad básica se llama Átomo. Un
átomo es la partícula más pequeña que puede existir de un elemento conservando las propiedades de dicho elemento.
Para esta unidad se tienen dos
objetivos, primero se examinará la naturaleza de átomo en la forma que se encuentra en los elementos y compuestos. Luego se verá más de cerca el átomo, con el objeto de comprender su estructura interna; las partes de que se compone.
Lo primero de que nos debemos percatar es que los átomos son extremadamente pequeño, ya que l diámetro de un átomo es del orden de 10-8 cm, se necesitarían 100 millones de átomos en una línea recta para alcanzar una longitud de 1 cm.
Átomos y Moléculas:
Aproximadamente 400 a.C., el filósofo griego Demócrito sugirió que toda la materia estaba formada por partículas minúsculas, discretas e indivisibles, a las cuáles llamó átomos. Sus ideas fueron rechazadas durante 2000 años, pero a finales del siglo dieciocho comenzaron a ser aceptadas.
En 1808, el maestro de escuela inglés, Jhon Dalton, publicó las primeras ideas "modernas" acerca de la existencia y naturaleza de los átomos. Resumió y amplió los vagos conceptos de antiguos filósofos y científicos. Esas ideas forman la base de la Teoría Atómica de Dalton, que es de las más relevantes dentro del pensamiento científico.
Los postulados de Dalton se pueden enunciar:
Un elemento está compuesto de partículas pequeñas e indivisibles llamadas átomos.
Todos los átomos de un elemento dado tienen propiedades idénticas, las cuales difieren de las de átomos de otros compuestos
Los átomos de un elemento no pueden crearse, ni destruirse o transformarse en átomos de otros elementos.
Los compuestos se forman cuando átomos de elementos diferentes se combinan entre sí en una proporción fija.
Los números relativos y tipos de átomos son constantes en un compuesto dado.
En la época de Dalton se conocían la Ley de la Conservación de la Materia y la Ley de las Proporciones Definidas, las cuales fueron la base de su teoría atómica. Dalton consideró que los átomos eran esferas sólidas e indivisibles, idea que en la actualidad se rechaza, pero demostró puntos de vista importantes acerca de la naturaleza de la materia y sus interacciones.
En ese tiempo algunos de sus postulados no pudieron verificarse (o refutarse) experimentalmente, ya que se basaron en limitadas observaciones experimentales de su época. Aún con sus limitaciones, los postulados de Dalton constituyen un marco de referencia que posteriormente los científicos pudieron modificar o ampliar.
Por esta razón se considera a Dalton como el padre de la Teoría Atómica Moderna.
La partícula más pequeña de un elemento que mantiene su identidad química a través de todos los cambios químicos y físicos se llama: Átomo. En casi todas las moléculas, dos o más átomos se unen entre sí formando unidades discretas muy pequeñas (partículas) que son eléctricamente neutras. Una Molécula es la partícula más pequeña de un compuesto o elemento que tiene existencia estable o independiente.
Un átomo de oxígeno no puede existir sólo a temperatura ambiente y presión atmosférica normal; por tanto, cuando se mezclan átomos de oxígeno en esas condiciones, de inmediato se combinan en pares. El oxígeno que se conoce está formado por dos átomos de oxígeno; es una molécula diatómica O2. Otros de moléculas diatómicas son: al hidrógeno, el nitrógeno, el flúor, el cloro, el bromo y el yodo.
Otros elementos existen como moléculas más complejas; por ejemplo el fósforo forma moléculas de cuatro átomos y el azufre moléculas de ocho átomos en condiciones de temperatura y presión normales. Las moléculas que contienen más de dos átomos se denominan moléculas poliatómicas.
Los átomos son los componentes de las moléculas, y estás a su vez son los componentes de los elementos y de la mayor parte de los compuestos. A simple vista es posible observar las muestras de compuestos y elementos, formadas por grandes números de átomos y moléculas. Con el microscopio electrónico es posible en la actualidad ver los átomos.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Partículas Fundamentales:
Las partículas fundamentales de un átomo son los bloques constituyentes básicos de cualquier átomo. El átomo, y por tanto toda la materia está formado principalmente por tres partículas fundamentales: electrones, neutrones y protones. El conocimiento de la naturaleza y la forma en que funcionan es fundamental para comprender las interacciones químicas.
La masa y las cargas de las tres partículas fundamentales se muestran en la siguiente tabla.
Partícula
Masa (uma) Carga Escala Relativa

Electrón (e-) 0.00054858 1-
Protón (p+) 1.0073 1+
Neutrón (nº) 1.0087 Ninguna


La masa del electrón es muy pequeña en comparación con la masa del protón o del neutrón. La carga del protón es de magnitud igual pero de signo opuesto a la carga del electrón. Procederemos a estudiar estas partículas con mayor detalle.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
El Electrón:
El electrón, comúnmente representado como e− es una partícula subatómica. En un átomo los electrones rodean el núcleo, compuesto de protones y neutrones. Los electrones tienen la carga eléctrica más pequeña, y su movimiento genera corriente eléctrica. Dado que los electrones de las capas más externas de un átomo definen las atracciones con otros átomos, estas partículas juegan un papel primordial en la química.
Historia y descubrimiento del electrón
La existencia del electrón fue postulada por
G. Johnstone Stoney, como una unidad de carga en el campo de la electroquímica. El electrón fue descubierto por Thomson en 1897 en el Laboratorio Cavendish de la Universidad de Cambridge, mientras estudiaba el comportamiento de los rayos catódicos. Influenciado por el trabajo de Maxwell y el descubrimiento de los rayos X, dedujo que en el tubo de rayos catódicos existían unas partículas con carga negativa que denominó corpúsculos.
Aunque Stoney había propuesto la existencia del electrón fue Thomson quién descubrió su caracter de partícula fundamental. Para confirmar la existencia del electrón era necesario medir sus propiedades, en particular su carga eléctrica. Este objetivo fue alcanzado por Millikan en el célebre experimento de la gota de aceite realizado en 1909.
George Paget Thomson, hijo de J.J. Thomson, demostró la naturaleza ondulatoria del electrón probando la dualidad onda-corpúsculo postulada por la mecánica cuántica. Este descubrimento le valió el Premio Nobel de Física de 1937.
El spin del electrón se observó por vez primera en el experimento de Stern-Gerlach. Su carga eléctrica puede medirse directamente con un electrómetro, y la corriente generada por su movimiento con un galvanómetro.
Los electrones y la práctica
Propiedades y comportamiento de los electrones
El electrón tiene una carga eléctrica negativa de −1.6 × 10−19 culombios y una masa de 9.10 × 10−31 kg (0.51 MeV/c2), que es aproximadamente 1800 veces menor que la masa del protón. El electrón tiene un spin 1/2, lo que implica que es un fermión, es decir, que se le puede aplicar la estadística de Fermi-Dirac.
Aunque la mayoría de los electrones se encuentran formando parte de los átomos, los hay que se desplazan independientemente por la materia o juntos formando un haz de electrones en el
vacío. En algunos superconductores los electrones se mueven en pareja.
Cuando los electrones que no forman parte de la estructura del átomo se desplazan y hay un flujo neto de ellos en una
dirección, este flujo se llama corriente eléctrica. La electricidad estática no es un flujo de electrones. Es más correcto definirla como "carga estática", y está causada por un cuerpo cuyos átomos tienen más o menos electrones de los necesarios para equilibrar las cargas positivas de los núcleos de sus átomos. Cuando hay un exceso de electrones, se dice que el cuerpo está cargado negativamente. Cuando hay menos electrones que protones el cuerpo está cargado positivamente.
Si el número total de protones y electrones es equivalente, el cuerpo está en un estado eléctricamente neutro. Los electrones y los positrones pueden aniquilarse mutuamente produciendo un fotón. De manera inversa, un fotón de alta energía puede transformarse en un electrón y un positrón.
El electrón es una
partícula elemental, lo que significa que no tiene una subestructura (al menos los experimentos no la han podido encontrar). Por ello suele representarse como un punto, es decir, sin extensión espacial.
Sin embargo, en las cercanías de un electron pueden medirse variaciones en su masa y su carga. Esto es un efecto común a todas las partículas elementales: la partícula influye en las fluctuaciones del vacío en su vecindad, de forma que las propiedades observadas desde mayor distancia son la suma de las propiedades de la partícula más las causadas por el efecto del vacío que la rodea.
Hay una constante
física llamada radio clásico del electrón, con un valor de 2.8179 × 10−15 metros. Es preciso tener en cuenta que éste es el radio que se puede inferir a partir de la carga del electrón descrito desde el punto de vista de la electrodinámica clásica, no de la mecánica cuántica. Por esta constante se refiere a un concepto desfasado, aunque útil para algunos cálculos.
Electrones en el Universo: Se cree que el número total de electrones que cabrían en el universo conocido es del orden de 10130.
Electrones en la vida cotidiana: La corriente eléctrica que suministra energía a nuestros hogares está originada por electrones en movimiento. El tubo de rayos catódicos de un televisor se basa en un haz de electrones en el vacío desviado mediante campos magnéticos que impacta en una pantalla fosforescente. Los semiconductores utilizados en dispositivos tales como los transistores Más información en: ElectricidadElectrones en la industria: Los haces de electrones se utilizan en soldaduras.
Electrones en el laboratorio: El microscopio electrónico, que utiliza haces de electrones en lugar de fotones, permite ampliar hasta 500.000 veces los objetos. Los efectos cuánticos del electrón son la base del microscopio de efecto túnel, que permite estudiar la materia a escala atómica.
El Protón:
Partícula nuclear con
carga positiva igual en magnitud a la carga negativa del electrón; junto con el neutrón, está presente en todos los núcleos atómicos. Al protón y al neutrón se les denomina también nucleones. El núcleo del atómo de hidrógeno está formado por un único protón. La masa de un protón es de 1,6726 × 10-27 kg, aproximadamente 1.836 veces la del electrón. Por tanto, la masa de un átomo está concentrada casi exclusivamente en su núcleo. El protón tiene un momento angular intrínseco, o espín, y por tanto un momento magnético. Por otra parte, el protón cumple el principio de exclusión.
El número atómico de un elemento indica el número de protones de su
núcleo, y determina de qué elemento se trata. En física nuclear, el protón se emplea como proyectil en grandes aceleradores para bombardear núcleos con el fin de producir partículas fundamentales. Como ion del hidrógeno, el protón desempeña un papel importante en la química.

El antiprotón, la antipartícula del protón, se conoce también como protón negativo. Se diferencia del protón en que su carga es negativa y en que no forma parte de los núcleos atómicos. El antiprotón es estable en el vacío y no se desintegra espontáneamente. Sin embargo, cuando un antiprotón colisiona con un protón, ambas partículas se transforman en mesones, cuya vida media es extremadamente breve. Si bien la existencia de esta partícula elemental se postuló por primera vez en la década de 1930, el antiprotón no se identificó hasta 1955, en el Laboratorio de Radiación de la Universidad de California.
Los protones son parte esencial de la materia ordinaria, y son estables a lo largo de periodos de miles de millones, incluso billones, de años. No obstante, interesa saber si los protones acaban desintegrándose, en una escala temporal de 1033 años o más. Este
interés se deriva de los actuales intentos de lograr teorías de unificación que combinen las cuatro interacciones fundamentales de la materia en un único esquema.
Muchas de las teorías propuestas implican que el protón es, en último término, inestable, por lo que los
grupos de investigación de numerosos aceleradores de partículas están llevando a cabo experimentos para detectar la desintegración de un protón. Hasta ahora no se han encontrado pruebas claras; los indicios observados pueden interpretarse de otras formas.
El Neutrón:
El Neutrón es una partícula eléctricamente neutra, de masa 1.838,4 veces mayor que la del electrón y 1,00014 veces la del protón; juntamente con los protones, los neutrones son los constitutivos fundamentales del núcleo atómico y se les considera como dos formas de una misma partícula: el nucleón.
La existencia de los neutrones fue descubierta en 1932 por Chadwick; estudiando la radiación emitida por el berilio bombardeado con partículas, demostró que estaba formada por partículas neutras de gran poder de penetración, las cuales tenían una masa algo superior a la del protón.
El número de neutrones en un núcleo estable es constante, pero un neutrón libre, en decir, fuera del núcleo, se desintegra con una vida media de unos 1000 segundos, dando lugar a un protón, un electrón y un neutrino.
En un núcleo estable, por el contrario, el electrón emitido no tiene la energía suficiente para vencer la atracción coulombiana del núcleo y los neutrones no se desintegran. La fuente de neutrones de mayor intensidad disponible hoy día es el reactor nuclear. El proceso fundamental que conduce a la producción de energía nuclear es la fisión de un núcleo de uranio originado por un neutrón: en la fisión el núcleo se escinde en dos partes y alrededor de tres neutrones por término medio (neutrones rápidos); los fragmentos resultantes de la escisión emiten, además otros neutrones.
Los neutrones como todas las radiaciones, producen daños directos, provocando reacciones nucleares y químicas en los
materiales alcanzados. Una particularidad de los neutrones es la de producir en los materiales irradiados sustancias radioactivas de vida media muy larga. De ahí que los daños más graves producidos por las explosiones nucleares sean los provocados por neutrones en cuanto que las sustancias transformadas en radiactivas por su acción pueden ser asimiladas por organismos vivientes; pasado cierto tiempo, estas sustancias se desintegran y provocan en el organismo trastornos directos y mutaciones genéticas

EL ATOMO
Durante los siglos VI a IV antes de Cristo, en las ciudades griegas surgió una nueva mentalidad, una nueva forma de ver el mundo no como algo controlado por los dioses y manejado a su capricho, sino como una inmensa máquina gobernada por una leyes fijas e inmutables que el hombre podía llegar a comprender. Fue esta corriente de pensamiento la que puso las bases de la matemática y las ciencias experimentales.Demócrito, uno de estos pensadores griego, en al siglo IV antes de Cristo, se interrogó sobre la divisibilidad de la materia. A simple vista las sustancias son continuas y se pueden dividir. ¿Es posible dividir una sustancia indefinidamente? Demócrito pensaba que no, que llegaba un momento en que se obtenían unas partículas que no podían ser divididas más; a esas partículas las denominó átomos, que en griego significa indivisible. Cada elemento tenía un átomo con unas propiedades y forma específicas, distintas de las de los átomos de los otros elementos.
De todos los dioses Hefesto era el único que trabajaba, su labor constante en la fragua y el yunque, forjando utensilios, armas, autómatas e incluso los rayos de Zeus, hizo que fuera el dios de la técnica y con ella de la civilización.
Las ideas de Demócrito, sin estar olvidadas completamente, cayeron en desuso durante más de dos mil años.
Mientras tanto, se desarrolló la química, se descubrieron nuevos elementos y se descubrieron las leyes que gobiernan las transformaciones químicas.
Precisamente para explicar algunas de estas leyes, las leyes ponderales, C:\WINDOWS\hinhem.scr en 1808 propuso una nueva teoría atómica. Según esta teoría, los elementos estaban formados por átomos, indivisibles e indestructibles, todos iguales entre sí, pero distintos de los átomos de los otros elementos. la unión de los átomos daba lugar a la variedad de sustancias conocidas y la ruptura de las uniones entre los átomos para formar nuevas uniones era el origen de las transformaciones químicas.
Símbolos convencionales propuestos por Dalton
Pila de Volta
Cuando en 1800 el italiano Volta descubrió la pila eléctrica, los quimicos tuvieron una fuente continua de electricidad y se descubrieron muchos nuevos elementos gracias a ella. También se descubrió que algunas sustancias, como la sal, al disolverse en agua, podían transmitir la electricidad, mientras que otras, como el azúcar, no lo hacían.
El físico y químico inglés Faraday, en la primera mitad del siglo XIX, estableció las leyes de la electroquímica, poniendo en relación cuantitativa algunas transformaciones químicas y la electricidad e intentó hacer pasar electricidad a través del vacío (lo que demostraría la existencia de partículas de electricidad), fracasando al no lograr un vacío lo bastante perfecto.
A finales del siglo XIX Crookes obtuvo un vacío suficiente, observó que al someter en el vacío unas placas metálicas a una gran diferencia de potencial, unas partículas, con carga negativa, que se llamaron electrones, abandonaban la placa cargada negativamente y se movían hacia la que tenía carga positiva. Esas mismas partículas aparecían si se iluminaba un metal con luz ultravioleta. Estaba claro que sólo podían proceder de los átomos del metal, así que el átomo no era indivisible, estaba formado por partículas.
El físico inglés Thomson creyó que el átomo estaba formado por una esfera de carga positiva en la que se engastaban, como pasas en un pastel, los electrones. pero su propio discípulo Rutherford, descubrió que no podía ser así, que toda la la carga positiva del átomo y casi toda su masa se encontraba en un reducido espacio, el núcleo atómico, mientras que su carga negativa de electrones estaban muy lejos de él, girando a su alrededor, de forma que la mayor parte del átomo estaba vacío (a escala, si el átomo tuviera el tamaño de una plaza de toros, el núcleo tendría el tamaño de un grano de arena). Posteriores investigaciones determinaron que el núcleo atómico estaba formado por dos tipos de partículas, los protones, de carga positiva, y los neutrones, sin carga eléctrica.
En 1860, los físicos alemanes Bunsen y Kirchhoff descubrieron que cada átomo, sin importar su estado, al ser calentado emite una luz de colores característica, los espectros atómicos. Gracias a su invención, se descubrió el elemento Helio, que se emplea en los globos, en el Sol, antes de sospecharse su existencia en la Tierra.
El físico danés Bohr, en 1913, explicó la existencia de los espectros atómicos suponiendo que los electrones no giran en torno al núcleo atómico en cualquier forma, sino que las órbitas de los electrones están cuantizadas mediante 3 números:
el número cuántico principal, n, que determina la distancia al núcleo, el radio de la órbita; el número cuántico azimutal, l, que determina la excentricidad de la órbita; y el número cuántico magnético, m, que determina su orientación en el espacio. Con posterioridad se añadió un cuarto número cuántico, el número cuántico de spín, s, que indica la rotación del electrón sobre si mismo.
Un átomo emitía o absorbía luz cuando un electrón pasaba de una órbita a otra Y no podían existir dos electrones en el mismo átomo, con los cuatro números cuánticos iguales.
Ya en la década de 1920 se propuso, gracias a los esfuerzos de Schrödinger, Heisenberg y el propio Bohr, la teoría de la mecánica cuántica, que da explicación del comportamiento de los electrones y átomos individualmente, en compuestos y en las transformaciones químicas... Pero eso, eso es otra historia....

TEMA 05 TABLA PERIODICA

Historia
La historia de la tabla periódica está intimamente relacionada con varias cuestiones clave del desarrollo de la química: [a] el descubrimiento de los elementos [b] el estudio de las propiedades comunes y la clasificación de los elementos [c] la noción de masa atómica (inicialmente denominada "peso atómico") y, posteriormente, ya en el siglo XX, de número atómico y [d] las relaciones entre la masa atómica (y, más adelante, el número atómico) y las propiedades periódicas de los elementos.
El descubrimiento de los elementos
Aunque algunos elementos como el oro, plata, estaño, cobre, plomo y Mercurio ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en el siglo XVII cuando el alquimista Henning Brand descubrió el Fósforo. En el siglo XVIII se conocieron numerosos nuevos elementos, los más importantes de los cuales fueron los gases, con el desarrollo de la química pneumática: oxígeno, hidrógeno y nitrógeno. También se consolidó en esos años la nueva concepción de elemento que condujo a Antoine Lavoisier a escribir su famosa lista de sustancias simples, donde aparecían 33 elementos. A principios del siglo XIX, la aplicación de la pila eléctrica al estudio de fenómenos químicos condujo al descubrimiento de nuevos elementos, como los metales alcalinos y alcalino-térreos, sobre todo gracias a los trabajos de Humprey Davy. En 1830 ya se conocían 55 elementos. Posteriormente, a mediados del siglo XIX, con la invención del espectroscopio, se descubrieron nuevos elementos, muchos de ellos nombrados por el color de sus líneas espectrales características: cesio (del nombre latino de "cielo" azul), talio (de tallo, por su color verde), rubidio (rojo), etc.

La noción de elemento y las propiedades periódicas
Lógicamente, un requisito previo necesario a la construcción de la tabla periódica era el descubrimiento de un número suficiente de elementos individuales, que hiciera posible encontrar alguna pauta en comportamiento químico y sus propiedades. Durante los siguientes 2 siglos, se fue adquiriendo un gran conocimiento sobre estas propiedades, así como descubriendo muchos nuevos elementos. La palabra "elemento" procede de la ciencia griega pero su noción modera apareció a lo largo del siglo XVIII, aunque no existe un consenso claro respecto al proceso que condujo a su consolidación y uso generalizado. Algunos autores citan como precedente la frase de Robert Boyle en su famosa obra "The Sceptical Chymist", donde denomina elementos "ciertos cuerpos primitivos y simples que no están formados por otros cuerpos, ni unos de otros, y que son los ingredientes de que se componen inmediatamente y en que se resuelven en último término todos los cuerpos perfectamente mixtos". En realidad, esta frase aparece en el contexto de la crítica de Robert Boyle a los cuatro elementos aristotélicos. A lo largo del siglo XVIII, las tablas de afinidad recogieron un nuevo modo de entender la composición química, que aparece claramente expuesto por Lavoisier en su obra "Tratado elemental de Química". Todo ello condujo a diferenciar en primer lugar qué sustancias de las conocidas hasta ese momento eran elementos químicos, cuáles eran sus propiedades y cómo aislarlos.
El descubrimiento de un gran número de nuevos elementos, así como el estudio de sus propiedades, pusieron de manifiesto algunas semejanzas entre ellos, lo que aumentó el interés de los químicos por buscar algún tipo de clasificación. Los primeros interesados en esta cuestión fueron los profesores de ciencias que tuvieron que enseñanzar una ciencia que abarcaba un número creciente de compuestos.

Los pesos atómicos
A principios del siglo XIX, John Dalton (1766-1844) desarrolló una nueva concepción del atomismo, al que llegó gracias a sus estudios meteorológicos y de los gases de la atmósfera. Su principal aportación consistió en la formulación de un "atomismo químico" que permitía integrar la nueva definición de elemento realizada por Antoine Lavoisier (1743-1794) y las leyes ponderales de la química (proporciones definidas, proporciones múltiples, proporciones recíprocas). Dalton empleó los conocimientos sobre las proporciones en las que reaccionaban las sustancias de su época y realizó algunas suposiciones sobre el modo cómo se combinaban los átomos de las mismas. Estableció como unidad de referencia la masa de un átomo de hidrógeno (aunque se sugirieron otros en esos años) y refirió el resto de los valores a esta unidad, por lo que pudo construir un sistema de masas atómicas relativas. Por ejemplo, en el caso del oxígeno, Dalton partió de la suposición de que el agua era un compuesto binario, formado por un átomo de hidrógeno y otro de oxígeno. No tenía ningún modo de comprobar este punto, por lo que tuvo que aceptar esta posibilidad como una hipótesis a priori. Dalton conocía que 1 parte de hidrógeno se combinaba con 7 partes (8 afirmaríamos en al actualidad) de oxígeno para producir agua. Por lo tanto, si la combinación se producía átomo a átomo, es decir, un átomo de hidrógeno se combinaba con un átomo de oxígeno, la relación entre las masas de estos átomos debía ser 1:7 (o 1:8 se calcularía en la actualidad). El resultado fue la primera tabla de masas atómicas relativas (o pesos atómicos como los llamaba Dalton) que fue posteriormente modificada y desarrollada en los años posteriores. Las incertidumbres antes mencionadas dieron lugar a toda una serie de polémicas y disparidades respecto a las fórmulas y los pesos atómicos que sólo comenzarían a superarse, aunque no totalmente, con el congreso de Karlsruhe en 1860.

Metales, no metales y metaloides
La primera clasificación de elementos conocida fue propuesta por Antoine Lavoisier, quien propuso q los elementos se clasificaran en metales, no metales y metaloides. Aunque muy práctico y todavía funcional en la tabla periódica moderna, fue rechazada debido a que había muchas diferencias en las propiedades físicas como químicas.

Triadas de Döbereiner
Uno de los primeros intentos para agrupar los elementos de propiedades análogas y relacionarlo con los pesos atómicos se debe al químico alemán Johann Wolfgang Döbereiner(1780-1849) quien en 1817 puso de manifiesto el notable parecido que existía entre las propiedades de ciertos grupos de tres elementos, con una variación gradual del primero al último. Posteriormente (1827) señaló la existencia de otros grupos de tres elementos en los que se daba la misma relación (cloro, bromo y yodo; azufre, selenio y teluro; litio, sodio y potasio).
Triadas de Döbereiner
Litio
LiCl LiOH
Calcio
CaCl2 CaSO4
Azufre
H2S SO2
Sodio
NaCl NaOH
Estroncio
SrCl2 SrSO4
Selenio
H2Se SeO2
Potasio
KCl KOH
Bario
BaCl2 BaSO4
Teluro
H2Te TeO2
A estos grupos de tres elementos se les denominó triadas y hacia 1850 ya se habían encontrado unas 20, lo que indicaba una cierta regularidad entre los elementos químicos.
Döbereiner intentó relacionar las propiedades químicas de estos elementos (y de sus compuestos) con los pesos atómicos, observando una gran analogía entre ellos, y una variación gradual del primero al último.
En su clasificación de las triadas (agrupación de tres elementos) Döbereiner explicaba que el peso atómico promedio de los pesos de los elementos extremos, es parecido al peso atómico del elemento de en medio. Por ejemplo, para la triada Cloro, Bromo, Yodo los pesos atómicos son respectivamente 36, 80 y 127; si sumamos 36 + 127 y dividimos entre dos, obtenemos 81, que es aproximadamente 80 y si le damos un vistazo a nuestra tabla periódica el elemento con el peso atómico aproximado a 80 es el bromo lo cual hace que concuerde un aparente ordenamiento de triadas.

Vis tellurique de Chancourtois
En 1864, Chancourtois construyó una hélice de papel, en la que se estaban ordenados por pesos atómicos los elementos conocidos, arrollada sobre un cilindro vertical. Se encontraba que los puntos correspondientes estaban separados unas 16 unidades. Los elementos similares estaban prácticamente sobre la misma generatriz, lo que indicaba una cierta periodicidad, pero su diagrama pareció muy complicado y recibió poca atención.

Ley de las octavas de Newlands
En 1864, el químico inglés John Alexander Reina Newlands comunicó al Real Colegio de Química su observación de que al ordenar los elementos en orden creciente de sus pesos atómicos (prescindiendo del hidrógeno), el octavo elemento a partir de cualquier otro tenía unas propiedades muy similares al primero. En esta época, los llamados gases nobles no habían sido aún descubiertos.
Ley de las octavas de Newlands
1 Li6,9Na23,0K39,0
2 Be9,0Mg24,3Ca40,0
3 B10,8Al27,0
4 C12,0Si28,1
5 N14,0P31,0
6 O16,0S32,1
7 F19,0Cl35,5
Esta ley mostraba una cierta ordenación de los elementos en familias (grupos), con propiedades muy parecidas entre sí y en Periodos, formados por ocho elementos cuyas propiedades iban variando progresivamente.
El nombre de octavas se basa en la intención de Newlands de relacionar estas propiedades con la que existe en la escala de las notas musicales, por lo que dio a su descubrimiento el nombre de ley de las octavas.
Como a partir del calcio dejaba de cumplirse esta regla, esta ordenación no fue apreciada por la comunidad científica que lo menospreció y ridiculizó, hasta que 23 años más tarde fue reconocido por la Royal Society, que concedió a Newlands su más alta condecoración, la medalla Davy.

Tabla periódica de Mendeléiev
La tabla periódica de los elementos fue propuesta por Dimitri Mendeleiev y Julius Lothar Meyer quienes, trabajando por separado, prepararon una ordenación de todos los 64 elementos conocidos, basándose en la variación computacional de las propiedades químicas (Mendeleiev) y físicas (Meyer) con la variación de sus masas atómicas. A diferencia de lo que había supuesto Newlands, en la Tabla periódica de Mendeleiev los periodos (filas diagonales y oblicuas) no tenían siempre la misma longitud, pero a lo largo de los mismos había una variación gradual de las propiedades, de tal forma que los elementos de un mismo grupo o familia (columnas monocromáticas de hipotenusa a cuadrado PI) se correspondían en los diferentes periodos. Esta tabla fue publicada en 1869, sobre la base de que las propiedades de los elementos son función periódica de sus pesos atómicos.

La noción de número atómico y la mecánica cuántica
La tabla periódica de Mendeléiev presentaba ciertas irregularidades y problemas. En las décadas posteriores tuvo que integrar los descubrimientos de los gases nobles, las "tierras raras" y los elementos radioactivos. Otro problema adicional eran las irregularidades que existían para compaginar el criterio de ordenación por peso atómico creciente y la agrupación por familias con propiedades químicas comunes. Ejemplos de esta dificultad se encuentran en las parejas telurio-yodo, argon-potasio y cobalto-niquel, en las que se hace necesario alterar el criterio de pesos atómicos crecientes en favor de la agrupación en familias con propiedades químicas semejantes. Durante algún tiempo, esta cuestión no pudo resolverse satisfactoriamente hasta que Henry Moseley (1867-1919) realizó un estudio sobre los espectros de rayos X en 1913. Moseley comprobó que al representar la raiz cuadrada de la frecuencia de la radiación en función del número de orden en el sistema periódico se obtenía una recta, lo cual permitía pensar que este orden no era casual sino reflejo de alguna propiedad de la estructura atómica. Hoy sabemos que esa propiedad es el número atómico (Z) o número de cargas positivas del núcleo. La explicación que aceptamos actualmente de la "ley periódica" descubierta por los químicos de mediados del siglo pasado surgió tras los desarrollos teóricos producidos en el primer tercio del siglo XX. En el primer tercio del siglo XX se construyó la mecánica cuántica. Gracias a estas investigaciones y a los desarrollos posteriores, hoy se acepta que la ordenación de los elementos en el sistema periódico está relacionada con la estructura electrónica de los átomos de los diversos elementos, a partir de la cual se pueden predecir sus diferentes propiedades químicas.
Tabla periódica de los elementos
Grupo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
I
II
III
IV
V
VI
VII
VIII
Periodo
1
1H
2He
2
3Li
4Be
5B
6C
7N
8O
9F
10Ne
3
11Na
12Mg
13Al
14Si
15P
16S
17Cl
18Ar
4
19K
20Ca
21Sc
22Ti
23V
24Cr
25Mn
26Fe
27Co
28Ni
29Cu
30Zn
31Ga
32Ge
33As
34Se
35Br
36Kr
5
37Rb
38Sr
39Y
40Zr
41Nb
42Mo
43Tc
44Ru
45Rh
46Pd
47Ag
48Cd
49In
50Sn
51Sb
52Te
53I
54Xe
6
55Cs
56Ba
*
72
Hf
73Ta
74W
75Re
76Os
77Ir
78Pt
79Au
80Hg
81Tl
82Pb
83Bi
84Po
85At
86Rn
7
87Fr
88Ra
**
104
Rf
105Db
106Sg
107Bh
108Hs
109Mt
110Ds
111Rg
112Uub
113Uut
114Uuq
115Uup
116Uuh
117Uus
118Uuo
Lantánidos
*
57
La
58Ce
59Pr
60Nd
61Pm
62Sm
63Eu
64Gd
65Tb
66Dy
67Ho
68Er
69Tm
70Yb
71Lu
Actínidos
**
89
Ac
90Th
91Pa
92U
93Np
94Pu
95Am
96Cm
97Bk
98Cf
99Es
100Fm
101Md
102No
103Lr
Alcalinos
Alcalinotérreos
Lantánidos
Actínidos
Metales de transición
Metales del bloque p
Metaloides
No metales
Halógenos
Gases nobles

Grupos
A las columnas verticales de la Tabla Periódica se las conoce como grupos. Todos los elementos que pertenecen a un grupo tienen la misma valencia, y por ello, tienen características o propiedades similares entre si. Por ejemplo los elementos en el grupo IA tienen valencia de 1 (un electrón su último nivel de energía) y todos tienden a perder ese electrón al enlazarse como iones positivos de +1. Los elementos en el último grupo de la derecha son los Gases Nobles, los cuales tienen su último nivel de energía lleno (regla del octeto) y por ello son todos extremadamente no-reactivos.
Los grupos de la Tabla Periódica, numerados de izquierda a derecha son:
Grupo 1 (IA): los metales alcalinos
Grupo 2 (IIA): los metales alcalinotérreos
Grupo 3 al Grupo 12: los metales de transición , metales nobles y metales mansos
Grupo 13 (IIIA): Térreos
Grupo 14 (IVA): carbonoideos
Grupo 15 (VA): nitrogenoideos
Grupo 16 (VIA): los calcógenos o anfígenos
Grupo 17 (VIIA): los halógenos
Grupo 18 (VIII): los gases nobles

Períodos
Las filas horizontales de la Tabla Periódica son llamadas Períodos. Contrario a como ocurre en el caso de los grupos de la tabla periódica, los elementos que componen una misma fila tienen propiedades diferentes pero masas similares: todos los elementos de un período tienen el mismo número de orbitales. Siguiendo esa norma, cada elemento se coloca de acuerdo a su configuración electrónica. El primer período solo tiene dos miembros: hidrógeno y helio, ambos tienen solo el orbital 1s.
La tabla periódica consta de siete períodos:
Período 1
Período 2
Período 3
Período 4
Período 5
Período 6
Período 7

Otras formas de representar la tabla periódica
Varias formas (en espiral, en 3D) [1];
1951. Forma en espiral, artista Edgar Longman [2] ;
1960. Forma en espiral, profesor Theodor Benfey[3];
1995. Forma en espiral-fractal, Melinda E Green *[4];
2004, noviembre. Forma en espiral sobre dibujo de galaxia, Philip J. Stewart [5];

MÁS SOBRE LA TABLA PERIÓDICA
La tabla periódica

se organiza en filas horizontales, que se llaman periodos, y columnas verticales que reciben el nombre de grupos, además, por facilidad de representación, aparecen dos filas horizontales fuera de la tabla que corresponden a elementos que deberían ir en el sexto y séptimo periodo, tras el tercer elemento del periodo.
Los grupos con mayor número de elementos, los grupos 1, 2, 13, 14, 15, 16, 17 y 18, se conocen como grupos principales, los grupos del 3 al 12 están formados por los llamados elementos de transición y los elementos que aparecen aparte se conocen como elementos de transición interna. Los elementos de la primera fila de elementos de transición interna se denominan lantánidos o tierras raras, mientras que los de la segunda fila son actínidos.
Salvo el tecnecio y el prometio, todos los elementos de la tabla periódica hasta el uranio, se encuentran en la naturaleza. Los elementos transuránidos, así como el tecnecio y el prometio, son elementos artificiales, que no se hallan en la naturaleza, y han sido obtenidos por el hombre.
El número de elementos de cada periodo no es fijo. Así, el primer periodo consta de dos elementos (hidrógeno y helio), los periodos segundo y tercero tienen cada uno ocho elementos, el cuarto y el quinto dieciocho, el sexto treinta y dos y el séptimo, aunque debería tener treinta y dos elementos aún no se han fabricado todos, desconociéndose 3 de ellos y de otros muchos no se conocen sus propiedades.
PERIODO 1 (2 elementos)

PERIODO 3 (8 elementos)
PERIODO 4 (18 elementos)
PERIODO 6 (32 elementos)
Cuando se descubrió la ordenación periódica de los elementos, se realizó de forma que elementos con propiedades químicas similares cayeran en la misma vertical, en el mismo grupo, de forma que algunas propiedades, que dependen más o menos directamente del tamaño del átomo, aumentaran o decrecieran regularmente al bajar en el grupo (afinidad electrónica, potencial de ionización, electronegatividad, radio atómico o volumen atómico). De esta forma, conocer la tabla periódica significa conocer las propiedades de los elementos y sus compuestos: valencia, óxidos que forma, propiedades de los óxidos, carácter metálico, etc.
El orden de los elementos en la
tabla periódica, y la forma de ésta, con periodos de distintos tamaños, se debe a su configuración electrónica y a que una configuración especialmente estable es aquella en la que el elemento tiene en su última capa, la capa de valencia, 8 electrones, 2 en el orbital s y seis en los orbitales p, de forma que los orbitales s y p están completos. En un grupo, los elementos tienen la misma configuración electrónica en su capa de valencia. Así, conocida la configuración electrónica de un elemento sabemos su situación en la tabla y, a la inversa, conociendo su situación en la tabla sabemos su configuración electrónica.
Los primeros dos grupos están completando orbitales s, el correspondiente a la capa que indica el periodo. Así, el rubidio, en el quinto periodo, tendrá es su capa de valencia la configuración 5s1, mientras que el bario, en el periodo sexto, tendrá la configuración 6s2. Los grupos 3 a 12 completan los orbitales d de la capa anterior a la capa de valencia, de forma que hierro y cobalto, en el periodo cuarto, tendrán las configuraciones 3d64s2 y 3d74s2, en la que la capa de valencia no se modifica pero sí la capa anterior.
Los grupos 13 a 18 completan los orbitales p de la capa de valencia. Finalmente, en los elementos de transición interna, los elementos completan los orbitales f de su antepenúltima capa. Así podemos saber, que para un periodo N, la configuración de un elemento será:
Grupos 1 y 2
Elemento de transición
Grupos 13 a 18
Elementos de transición interna

No hay comentarios: